Biomass to motor fuels over the black liquor route.

Status and requirements for demonstration

Patrik Löwnertz

2009-01-22

Pulp mill integrated process with biomass feedstock swap

- Existing plant-internal liquid biomass stream (black liquor) is used as motor fuels plant gasification feedstock
- Steam generation from biomass is used to make up energy content of produced biofuel

Black liquor is liquid biomass with properties uniquely suitable for gasification

- It is a liquid
 - Easy to feed to a pressurized gasifier
 - Can be atomized to fine droplets for rapid gasification rates

- It is highly reactive due to high Na/K content
- Gasification in an entrained flow hightemperature mode can then give
 - Full carbon conversion
 - No tar formation
 - Low methane formation
 - Small reactor volume (~25 m³/1000 t BLS/d)
 - Simple gas clean-up

Feedstock swap gives full biomass feedstock flexibility

- Any biomass that can be beneficially burned in conventional high-performance steam generating boilers can be used
 - Forest logging residues (bark, tops, branches)
 - Saw mill, board mill and other wood waste
 - Agricultural residues (straw, corn stower, bagasse etc)
 - Mixed solid waste

Typical value chain

ĺ	Activity	Characteristics
١	Forestry	Well-established, low non-renewable resource use
IOITHIII FUIT TIME OF THE ICS	Biomass extraction	By-product from extraction of saw logs and pulp wood
	Feed stock preparation	Pulping to produce black liquor. Shredding /chipping of biomass for stream generation in conventional HP boiler
	Gasification	High-temperature entrained-flow gasifier, very short retention time. Novel technology.
	Raw gas post- treatment	Only condensing cooling/steam generation, ~5 ppm tar, low methane content
	AGR and sulphur handling	Well-established technologies
	Synthesis and product distillation	Well-established technologies (MeOH and DME)
	Product	High flexibility - MeOH and DME preferred due to high conversion and vehicle efficiency, very good environmental performance, moderate investment cost.

CHEMREC

Energy to Succeed

Critical technologies

- Emphasis on using established technologies wherever possible:
 - ASU, AGR, sulphur recovery, synthesis and product distillation
- Scale-up of oxygen-blown, pressurized gasifier key challenge, in particular
 - Burner nozzle (atomizing efficiency, flame shape, flow patterns)
 - Quench (flow patterns, mechanical design)
 - Gas cooler steam generator (mechanical design)
- Special challenge from pulp mill integrated design:
 - Even higher demand for availability

The motor fuels plant - MeOH/DME case

The Gasifier - Core technology risk areas

Critical performance / cost areas

- Low risk in technology except for scale-up related risks for gasifier and gas cooler
- Low risk in investment cost estimates; high percentage of cost from established technologies
- Low risk in conversion / consumption related costs; high confidence in conversion efficiency
- Higher risk in project execution; can be mitigated by extensive pre-engineering and selection of contractors and contracting form. Can be in conflict with time-to-market goals.
- Start-up curve and final availability critical to overall project financial performance; first plants pose higher risk

First generation technology, > 55 000 h of full-scale operation

- Commercial atmospheric, airblown gasifier to boost recovery capacity
- Capacity 300 t BLS/d, about 15% of total mill recovery capacity
- Installed in 1996, now operated more than 55 000 h
- Of great importance for development of refractory system and other components
- Has now reached 95% annual availability and 2 years refractory life

CHEMREC

Energy to Succeed

Existing pilot plant

- Chemrec already runs the world's only plant for oxygenblown, pressurized gasification of black liquor to raw syngas
- Capacity 20t solids/d, 3 MWth
- Oxygen-blown, 30 bar operating pressure
- In continuous 24/7 operation with 15 operators
- 8000+ hours of operation

Chemrec's plant and ETC's research facility

Ground floor of gasification plant

BioDME plant to be operational H1 2010

BioDME Consortium

VOLVO

DELPHI

Demonstration plant next step

- Goals of demonstration plant
 - Show successful operation of near-commercial size plant including scaled-up oxygen-blown gasifier
 - Demonstrate successful integration within motor fuels plant
 - Demonstrate successful integration with pulp mill
- Minimum plant size 500 t BLS/d or about 32 000 m3 gasoline equivalents/year
- Total investment cost €150 million of which 50% grant funding or equivalent required
- Pre-projects for two demonstration plants ongoing

Demonstration plant partners needed

- Host pulp mill
- Motor fuels plant investors / operator
- Technology suppliers
- Product off-taker / Fuel distributor
- (Vehicle manufacturer)
- (Transportation buyers)

Sustainability

 Key environmental and economic sustainability issues for Chemrec black liquor gasification extensively evaluated within

EUCAR / Concawe / JRC WtW project

Renew project

Very good scores for key variables including

- WtW and conversion efficiencies
- GHG emission reduction
- Land use efficiency
- Product cost

BioDME from Wood Waste over Black Liquor – Highest Efficiency, Lowest Emissions

High efficiency, simple system and plant integration synergies gives low product cost

Fransforming Pulp Mills

Thank you!

CHEMREC