

Anselm Eisentraut Bioenergy Analyst

Current status and future outlook for biofuels

EBTP 4th Stakeholder Plenary Meeting Brussels, 14.09.2011

Technology Roadmap

Biofuels for Transport

MEDIUM-TERM OIL8GAS MARKETS

Global Biofuel Production – Medium-Term Outlook

- Global biofuels production rises from 1.8 mb/d (105 billion L) in 2010 to 2.3 mb/d (135 billion L) in 2016
 - A total increase of 0.5 mb/d...
 - ...equivalent to an average yearly growth of 4.3% or 90 kb/d
- On an energy adjusted basis versus oil, biofuels supply increases from 1.3 mb/d (2.4 EJ) in 2010 to 1.7 mb/d (3.4 EJ) in 2016
 - Energy adjusted supply growth to meet 9% of gasoline and gasoil growth, with ethanol at 24% of gasoline growth and biodiesel at 4% of gasoil growth
 - Yet, in 2016, biofuels satisfy only 1.8% of total global demand

The BLUE Map Scenario – Towards a low-carbon energy sector

- Baseline Scenario business-as-usual; no adoption of new energy and climate policies
- **BLUE Map Scenario** energy-related CO₂-emissions halved by 2050 through CO₂-price and strong support policies
 - Serves as basis for all IEA Technology Roadmaps
 - 23% of global emission savings occur in the transport sector

IEA Technology Roadmaps

- Roadmaps are intended to:
 - Highlight pathway(s) to reach large scale use of low-carbon technologies, consistent with Energy Technology Perspectives publication
 - Focus on the key steps over the next 5-10 years, as well as long-term milestones, including:
 - Identify barriers and obstacles and how to overcome these
 - Identify key conversion pathways
 - KeyRD&D gaps and how to fill them while ensuring sustainability
 - Identify market requirements and policy needs
 - Define international collaboration needs

For more information: www.iea.org/roadmaps

- IEA Technology Roadmap Biofuels for Transport
 - Developed under consultation of industry, governmental and research institutions as well as NGOs
 - 2 expert workshops on technologies and feedstock availability and sustainability
 - → the latter feeds also into the upcoming Technology Roadmap on Bioenergy for Heat and Power

Value of Balling

Smart Grids

Solar Photovoltaic Energy

© 0800//8A **2011**

IEA Biofuel Roadmap: Vision

- Global biofuel supply grows from 2.5 EJ today to 32 EJ in 2050
 - Biofuels share in total transport fuel increases from 2% today, to 27% in 2050
 - Diesel/kerosene-type biofuels become particularly important to decarbonise heavy transport modes
- Biofuels could reduce global transport emissions by 2.1 Gt CO₂-eq. in 2050
- Large-scale deployment of advanced biofuels will be vital to meet the roadmap targets

- Biofuel use will increase considerably in all regions
 - Biofuel demand driven mainly by OECD countries until 2020
 - In 2050, non-OECD countries account for 70% of total biofuel consumption
- Trade will be vital to supply biomass and fuels to regions with strong demand

Land Requirements

Pressure on agricultural land can be limited and risk of ILUC can be mitigated through:

- Productivity improvements
- Use of residues and wastes
- Use of pasture/ unused land
- Potential for wood biomass
- Biomass cascading & biorefineries
- Land-use zoning and sustainable landuse management schemes

Note: This is gross land demand, excluding land-use reduction potential of co-products

- Land required to produce biofuels increases from 30 Mha today to 100 Mha in 2050, in addition to 1 billion tons of residues
 - Sustainable land expansion will be challenging given increasing demand for food and biomaterial
- Sound policies are needed to ensure sustainability and mitigate risk of indirect land-use change (ILUC)
- In the long-term, a sustainable land-use management for all agricultural and forestry land is needed. ECD/IEA 2011

Sustainability of Biofuels

- Sound policies are needed to ensure biofuels are produced sustainably
- Adoption of internationally aligned sustainability certification for biofuels
 - Certification schemes should be based on international sustainability criteria (as developed e.g. by the Global Bioenergy Partnership, GBEP)
- However, most sustainability issues are relevant to the whole agricultural/ forestry sector
- Ultimately, all agricultural and forestry products should be certified

Biofuel Production Costs 2010-50

- Most conventional biofuels still have some potential for cost improvements
- Advanced biofuels reach cost parity around 2030 in an optimistic case
- Total expenditure on biofuels 2010-50 sums up to USD 11-13 trillion (i.e. 11-12% of total fuel costs)
- Incremental costs compared to use of fossil fuels are in the range of +/-1% of total fuel cost spending in the next 40 years

Key policy actions

Stability:

Create a long-term policy framework for biofuels.

Innovation and Deployment:

- Provide sustained funding for advanced biofuels RD&D and commercial deployment.
- Support research efforts on land availability mapping and biomass potential analysis.

Sustainability:

- Adopt sound, internationally aligned sustainability certification for biofuels.
- Link economic incentives to sustainability performance of biofuels.
- Incentivise use of wastes and residues.

International Collaboration:

- Engage in international collaboration on capacity building and technology transfer.
- Promote the alignment of biofuel and other related policies (agriculture, forestry, rural development).

Acknowledgements

- Thanks to the co-authors:
 - Adam Brown, Lew Fulton, Jana Hanova and Jack Saddler

- IEA Technology Roadmap Biofuels for Transport Available: <u>www.iea.org/roadmaps</u>
- Contact:

Anselm.Eisentraut@iea.org

Forthcoming:

IEA Technology Roadmap – *Bioenergy for Heat and Power*Available early 2012

Incremental Costs of Biofuels

- Additional expenditure on biofuels (compared to diesel/gasoline):
 - USD 890 billion of <u>fuel cost savings</u> in the lowcost scenario
 - USD 810 billion additional expenditure in the high-cost scenario
- Incremental costs compared to use of fossil fuels are in the range of +/-1% of total fuel cost spending in the next 40 years

Overview on Biofuel Technologies

- 1. Biomass-to-liquids; 2. Fischer-Tropsch; 3. Dimethylether; 4. Biosynthetic gas.
- A broad number of conversion routes exist
- More RD&D is needed to get advanced biofuels to commercial-scale to prove they can meet cost and GHG targets

Biofuels Contribution to Emissions Reduction

Note: Modal shifts (not included) could contribute an additional 1.8 Gt CO,-eq. of emission reductions.

- Efficiency improvements are the most important low-cost measure to reduce transport emissions
- Biofuels can reduce global transport emissions by 2.1 Gt CO₂-eq. in 2050
 - → Need for efficient technologies that provide considerable life-cycle GHG emission reductions

Global Biomass Potential

- A considerable potential of "low risk" biomass sources has been assessed
- Biomass for biofuel production (65 EJ) could come entirely from residues, wastes, and sustainably grown energy crops

However...

Biofuels sustainability increasingly questioned

- Discussion on competition with food production (food vs. fuel)
 - Biofuels responsible for 3%-75% of food price increase
 - "Crime against humanity" (Jean Ziegler, UN Special Rapporteur)

Biofuel sustainability

- Agricultural commodity prices fell considerably after July 2008
- Latest studies suggest biofuels had only a limited impact on food prices
 - Biofuel production occupies "only" 30 Mha (<1% of 5 Gha agricultural area globally)
 - Biofuel production generates valuable co-products that enter the fodder market (dried distiller's grains, soy-meal)
- What are key factors impacting agricultural commodity prices?
 - Weather
 - Oil price
 - Speculative trading
 - Currency volatility