

Chemtex Group

Global Engineering and Project Solutions

"Case study on the first advanced industrial demonstration bioethanol plant in the EU, and how it was financed"

Stefania Pescarolo

R&D Public Funding Projects Assistant Chemtex Italia - Mossi & Ghisolfi Group, Tortona (AL), Italy

Summary

- 1. M&G vision on renewables
- 2. The companies involved
- 3. PROESA® Technology

M&G vision on renewables

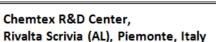
For both **Bio-Fuels** and **Bio-based Chemicals** the solution is based on the same key fundamentals:

- 1.Competitive pricing compared to products from Black Route (at oil prices in the 60-70\$/barrel);
- 2.Environmentally sustainable with respect to Green House Gases: overall GHG sequestration balance (including biomass feedstock farming, transportation, chemicals or biofuels production processes);

3. Agronomically sustainable on the long term (i.e. no competition with food) and profitable for farmers

M&G Group: the companies involved

\$3B per year #2 producer of PET 2,600 Employees Location: Italy, US, Mexico, Brazil



Chemtex R&D&D investments on renewables

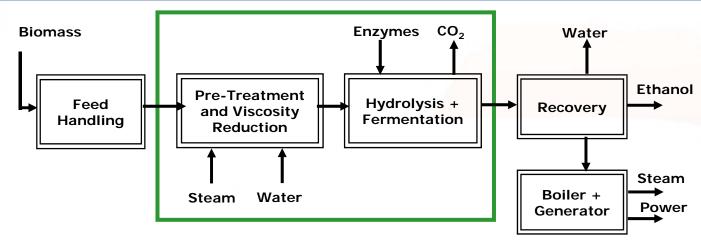
Lignocellulosic biomass to biofuel/biochemicals

Chemtex R&D Center, Modugno (BA), Puglia, Italy

Lignin valorization to biochemical/biofuels

Chemtex-M&G Sharon Center, Ohio, US

Lignin valorization to biochemical and R&D support


	Feedstock	Capacity	Location	M&G Investment	Status
R&D Center on Lignocellulosic biomass conversion on Biofuel and Biochemical and development of PROESA® technology (lab/batch/pilot scale)	Multiple lignocellulosic energy crops and agro residues	50 kg/h of biomass inlet continuous Pilot plants	Rivalta (IT)	€ 160 million	On going
R&D Centers on Lignin valorization to Biofuel and Biochemical (lab/pilot/demo scale)	Lignin	Bioreformate, BTX. Production of biofuel and biochemicals	Modugno (IT) Sharon C. (US)	€ 50 million	On going
2 nd generation Industrial Bioethanol Demo plant	Arundo donax and Wheat straw	40,000 ton/y Bioethanol	Crescentino (IT)	€ 120 million (CAPEX)	Commissioning 12/2012

PROESA® technology: the pillars

The <u>Pillars</u> of PROESA™ are:

- 1. Agronomy: Field experimentation and best energy crops identified and characterized (12 kinds of biomasse tested -> tech biomass agnostic). No biomass drying/grinding required.
- 2. Biomass Pre-Treatment and Viscosity Reduction: Continuous process developed and piloted to produce costeffective and clean fermentable sugars. Low level of inhibitors. No use of chemicals (only steam is added). Rapid liquefaction of solid content.
- 3. Hydrolysis and Fermentation: Unique hybrid SSCF process scheme yielding high ethanol concentrations. Reduced enzymes load. High solid concentration (>40%) in the hydrolysis step
- 4. Valorization of secondary streams and co-products.

PROESA® Technology: the history

2006-2008

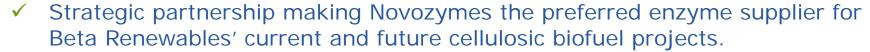
- Scouting of Technologies
- Agronomic testing on energy crops
- Generation of key inventions
- Proof of unit operation in lab/batch

2009-2010

- PILOT PLANT construction & start up (June 2009)
- Pilot Plant operation and Data gathering
- Test of plant flexibility using multiple biomasses

2011-2012

- Crescentino 40,000 ton/y INDUSTRIAL DEMONSTRATION ETHANOL PLANT
- Technology licensing



Key advantages of PROESA® technology

Financial:

- ✓ Lower capital investment as a result of minimum handling of biomass, simplified flow schemes and no special materials of construction;
- ✓ Cash cost of fermentable sugars at ~10 ¢/lb;
- ✓ Cash cost of ethanol of <\$ 1.50/USG (\$ 0.40/L);</p>
- ✓ Cost-effective at modest scale; short supply chains
- ✓ Beta Renawables: joint venture Chemtex-TPG

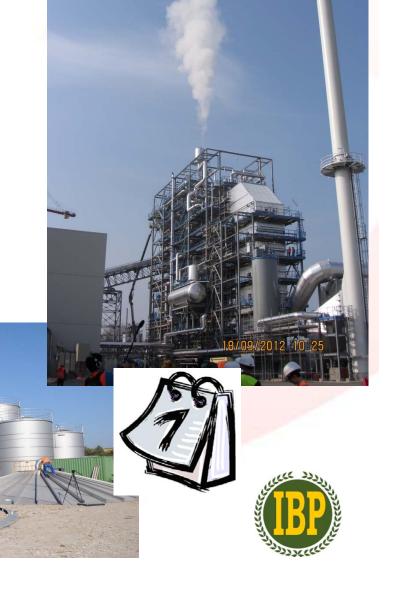
Flexibility:

- Feedstock-agnostic: energy crops, agricultural residues, organic waste, woody biomass, bagasse;
- ✓ Deployable worldwide;
- Pure lignin by-product to be valorized to energy or renewable chemicals.
- Commitment of Chemtex and its partners to continuous development and improvement

Competitive and attractive economics without subsidies

- ✓ Commercial-scale cellulosic ethanol plant, Q3 2012: 40,000 ton/y, Crescentino - Italy (ready to start)
 - ✓ Cellulosic costs less
 - ✓ No subsidies required

Crescentino in numbers


- 120 M€ of investment
- 40'000 Mtons Second generation Bioethanol
- 160,000 ton/y of dry lignocellulosic biomass
- **13 MW** of *green* power from lignin
- 300 pieces of equipment
- 1′500 tons of steel
- 1'400 tons of pipes and valves
- **30'000** m³ of concrete
- **18 km** of underground piping
- More than 150 persons involved directly

Sept. 2011

Commissioning: December 2012

Sept .2012

How can research and its scale-up be founded?

Basic and applied research (lab/batch)

PILOT SCALE

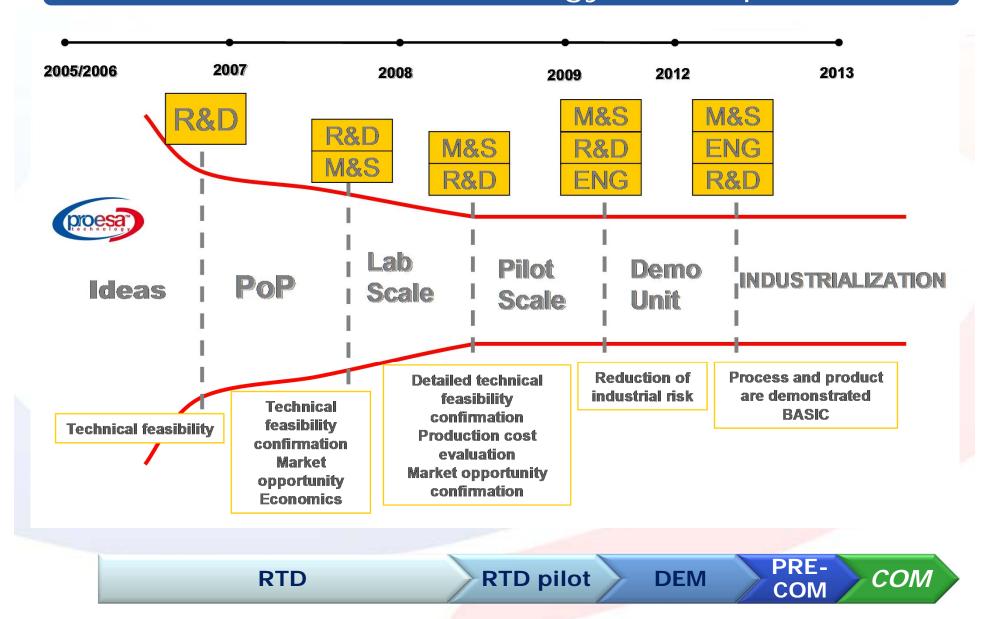
DEMONSTRATION PLANT

First-in-its-kind PRE-COMMERCIAL PLANT

INDUSTRIAL COMMERCIAL PLANT

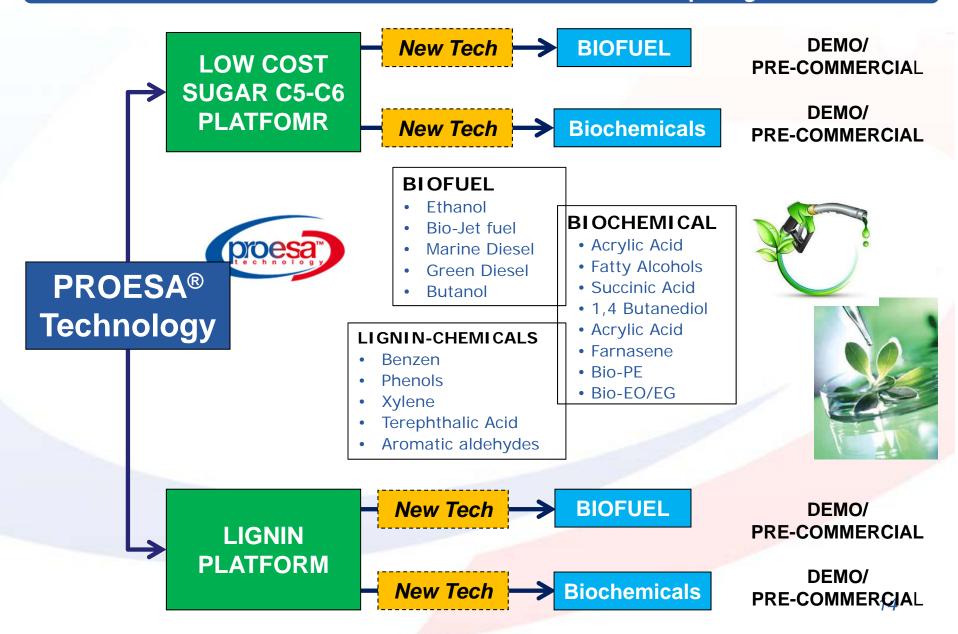
European (FP7, NER300, IEE, Life+, ...) and National funds

RTD


RTD pilot

DEM

PRE-COM


COM

PROESA® technology scale-up

Public funds for demonstration project - the Bioethanol case Project BIOLYFE Project PRIT Approved by Industria 2015 Approved by FP7 Enzymatic Pretreatment Fermentation Separation Hydrolysis **Demo Plant Construction** REGIONE PIEMONTE **INDUSTRIA 2015 RTD** DEM **PRE-COM** RTD COM pilot SEVENTH FRAMEWORK **PROGRAMME**

Chemtex next demonstration projects

