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Cellulosic Bioethanol: more than 2G biofuel
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Why 2G Bioethanol (from biochemical routes) is
still not cost-competing with 1G Bioethanol ?

O Feedstock availability & supply (clean and at low-cost)

O High CAPEXand OPEX costs compared to 1G ethanol

L Pretreatment and enzyme production are more costly and energy
demand (and less sustainable in terms of GHG emmissions) than
the combined “enzymatic hydrolysis + fermentation” steps.

O Lowerperformance of 2G strains (1Gstrain consumes C6 sugars
In 8 hours; thebest 2G strains consumes LC sugars into 36-40 h)

U Thenon-fermentable component of biomass (Lignin)isusually
burnttosupplytheenergyrequired forthe overall plant energetic
demand (low energy-efficiency)

O Qualityof lignin for valorization towards new end-uses



The Lignocellulosic Ethanol Technology: in short

Lignocellulosic
biomass

Biomass
characterization
(inter. WP3)

4.1. Novel methods for biomass deconstruction

- lonic liquids
- Ultra-fine milling

Task 4.2. CBP systems for advanced energy vectors

- enzymatic hydrolysis (cellulosomes and hemicellulosomes)
- fermentation for novel biofuels (synthetic biology for advanced biofuels)
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Task 4.3. Integrated process design, development and evaluation

- smart integration of operation units / process intensification
- novel energy-efficienttechnologies for downstream processes
- modelling and optimization of bioenergy processes
- LCA of innovative bioprocesses
Integrated sustainability assessment

of biofuel value chains
(inter. WP6)



Pretreatment Technology: Challenges

Feedstock Challenge:
Lignocellulose biomass recalcitrance and heterogeneity is an issue!
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Biomass composition after pretreatment

100 In: Carvalheiro, F.,

Ligrin Duarte, L.C., Girio, F. M.
(2008). J. Scientific &
Ind. Res., 67, 849-864

Cellulose

Arbitrary scale

Hemicellulose

Acid Hydrolysis Autohydrolysis Wet Oxidation
Steam
Explosion

pH Increase ->

0 CAPEX expensive

U Insufficient (or no) separation of cellulose and lignin o ...
O Formation of by-products that inhibit fermentation LNEG

O Use of chemicals and energy-intensive



Steam explosion pretreatment

_ BIOMASS _
Steam explosion (uncatalyzed) | Premaciosing e

» Saturated steam (< 240°C, seconds-
minutes)

» Biomass is wetted by steam at high pressure
and then exploded when pressure within the
reactor is rapidly released

» Disaggregation of lignocellulosic matrix,
breaking down inter- and intra-molecular PRODUCT
linkages (forces resulting from Figure 28: Steam explosion process (Isabella De Bari)
decompression), ultrastructure modification

Adapted from: “Lignocellulosic ethanol” (2013), D. Chiaramonti, A.
Giovannini, R.Janssen, R. Mergner, WIP Renewable Energies
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Pretreatment at Demo/Industrial scale
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Pretreatment Technology: Challenges

Feedstock Challenge:
Lignocellulose biomass recalcitrance and heterogeneity is an issue!

O Biomass (physico-chemical properties)
L Absorption vs Adsorption
U Adhesion (to mechanical components)
U Abrasive effect (on the screws)

-> Mechanical performance:
O Clean biomass pressurisation on
continuous systems is a bottlenck

O Chemical & Energy performance:
O Avoid the use of Catalysts (this increase Lignin purity & value)
L Decrease Reaction Temperature (this increase Energy Effic.)
O Avoid the generation of inhibitors (this increase fermentation
yields & improve downstream processing)
O Evaluate sustainability impact




Challenges for Enzymatic Hydrolysis - Strategies
O1m0
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O Improvement of enzyme efficiency towards different pre-treated biomass

v’ Customized commercial enzyme production
— Enzymes highly optimized (maximum yields, shorter reaction times)

—> Disadvantage: Costs & dependency from commercial contracts with suppliers, etc

v On-site enzyme production (usually employing pre-treated biomass)

—> Disadvantage: Potentially divert part of pre-treated biomassfrom 2G ethanol

production (lowering ethanol yield:tons EtOH/tons feedstock)
v" Role of Hemicellulases
—> improvement of C5/C6 cofermentation
O Enzyme recycling (ultrafiltration, solid recycling fed-batch SSCF)

Fresh
Substrate

Fresh Recycle stream

Substrate
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Source: Volynets & Dahman 20101IntJ En Environ.2:427




The Enzymatic Hydrolysis strategies

EH yields & Enzyme recycling
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EH + Fermentation integration

Hybrid Hydrolysis and Fermentation (HHF)

J SSF with pre-hydrolysis/liquefaction (at optimal temperature)

viscosity reduction and pre-saccharification followed by SSF for ethanol production

favoringincreased WIS contents by avoiding mixing problems=> T EtOH titer
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Fig. 3. Ethanol yield under varying hydrolysis conditions using Cellic® CTec3 at pH 5.0 and 50 *C on unwashed
dilute acid-pretreated com stower at 13% total solids loading. The yeast was pitched at different times, as

indicated by initiation of ethanol preduction. The ethanol yield will vary depending on the substrate, enzyme

dosing, yeast pitch, and hydrolysis configuration. In this example, an 55F configuration does not achieve the

same yields as the options that include a dedicated hydrolysis step prior to fermentation. The process time

available for hydrohysis and fermentation will dictate the options available ’



Hybrid Enz. Hydrolysis | Role of Hemicellulases

(] Goal: To minimize C5 uptake inhibition by Glucose during co-fermentation

Hydrolysis of BS extrudate:
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Enzymatic Hydrolysis| WIS content
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Fermentation| GMO vs non-GMO
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2G Technology (stand alone)
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2G Technology (stand alone)
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2G Technology (stand alone)
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2G Technology (integrated with 1G)

1G Molasses

(1) Biomass—»| StEX S T Dest/Rectif |— Ethanol
Slurry . .
5| Integrated ngnm
Enzyme Prodl
1G Molasses
Non-GMO
|
. S
(2) Biomass——| StEX »| EH —Sf+ C6 SHF | Dest/Rectif|— Ethanol
5| Integrated ngnm
L Enzyme Prodl
I »| C5Ferm
v T
Acetic Ac. o0
Non-GMO/GMO o _%



2G EtOH biorefineries| small vs large-scale

The plant size greatly influences any
lignocellulose-based biorefinery

The heterogeneity of lignocellulosic material allows
to produce a range of products as broad as the
existing in petrochemical industry

However, there are few chemical products with
markets large enough to absorb the production of a
large-scale biorefinery




NPV versus biorefinery (small) scale (from 30,000-
100,000 ton feedstock/yr)
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What are the next Achievements?

Is ETOH the right “building block” for NextGen transportation setor?
Role of higher alcohols, long-chain fatty acids,...

Improving overall energy-efficient (eg, cane-energy, low-demand biomass
pretreatments, CBP, DSP....)

Biochemicals and other chemicals shall have an increasing importance in
advanced biorefineries

However, there are few chemical products with markets large enough to
absorb the production of a large-scale biorefinery

Is lignin becoming the “gold component” as main feedstock for
conversion into high-added value products, being EtOH production a co-
product of the value chain? (e.g., BALI™ from Borregard Industries)

Do we still need EH (by adding cellulases and other hydrolytic enzymes)?

Small scale processing reduces capital costs and costs for energy and
transportation

Clusters-based biorefineries shall use more efficient the entire feedstocks
and by-streams (CAPEX & OPEX also decreases) and it is expected as
industrial outcome a wider range of products for different “core” markets.



ThanKks for your attention

francisco.girio@Ineg.pt

More info:

www.proethanol2g.org

www.babet-real5.eu
www.smibio.net

www. lneg. pt

LNEG act as Coordinator

of:
= FP7Proethanol2G
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