This site is no longer updated but you can still browse the archived information
Click here for the new website

ETIP Bioenergy-SABS ETIP Bioenergy-SABS
Menu
  • About us
  • Contact
  • Home
  • Value chains
    • Feedstocks
      • Overview
      • Agriculture
      • Forestry
      • Waste
      • Algae and aquatic biomass
      • Plant biotechnology
    • Pathways
      • Pre-treatment technologies
      • Priority value chains
      • Established value chains
      • Development pathways
      • Add ons overview
    • Products & end use
      • Intermediates
      • Products
      • End use
  • Markets & Policies
    • Markets for Biofuels
    • Standards
    • Financing and investment for biofuels
    • Policy & Legislation about Bioenergy
    • Consultations for biofuels
    • EU and Member States Strategies, initiatives and official information relating to biofuels
  • Sustainability
    • Overview
    • Environmental impacts
    • Land availability
    • Land Use Changes
    • Certification
    • Food vs. Fuel Debate
    • Palm Oil
    • Societal benefits of biofuels
    • Bio-CCS
  • Supporting Initiatives and Platforms
    • Related European Technology (and Innovation) Platforms & JTIs
      • ETPs and ETIPs - an overview
      • ETIP on Renewable Heating and Cooling (RHC-ETIP)
      • European Road Transport Research Advisory Council (ERTRAC)
      • ETP for Sustainable Chemistry (SusChem)
      • Forest-based Sector Technology Platform (FTP)
      • Plants for the Future ETP
      • Fuel Cells and Hydrogen JTI
      • Zero Emissions Platform (ZEP)
      • ART Fuel Forum (AFF)
    • EC RD&D Networks and Initiatives
      • European Energy Research Alliance Bioenergy Joint Programme (EERA Bioenergy JP)
      • Sustainable Transport Forum (STF) and Subgroup on Advanced Biofuels (SGAB)
      • ERA-NET Bioenergy
      • EAFO - European Alternative Fuels Observatory
  1. Home
  2. Value chains
  3. Pathways
  4. Add ons overview
  5. Bioenergy carbon capture and storage (BECCS)
  • Strategic Research and Innovation Agenda 2023
  • Stakeholder Plenary Meetings
  • Revamp of the SET Plan and the role of bioenergy and renewable fuels
  • Report on Advanced biofuels in the European Union
  • Webinar: Opportunities and Challenges for Hybridization of Geothermal with Biomass and Concentrated Solar Thermal
  • CEF Energy 2023: call for status of cross-border renewable energy projects

Bioenergy carbon capture and storage (BECCS)

The concept of Bioenergy and Carbon Storage (BECS or Bio-CCS) has been suggested as a means of producing carbon negative power (i.e. removing carbon dioxide from the atmopshere via biomass conversion technologies and storage underground). Carbon capture and storage (CCS) technology is currently at a demonstration phase, and research is mainly focused on reducing the costs of capture and storage so that it can be applied to a new generation of large-scale, power stations with lower emissions. However, in the future CCS could potentially be applied to a wide range of energy plants, including those incorporating co-firing or co-gasification of sustainable biomass feedstocks. (agricultural and wood wastes and energy crops), or even 100 % biomass energy plants, biofuel production facilities or biorefineries.

The release of carbon dioxide into the atmosphere by human activity is caused both by extraction and combustion of fossil fuels and by clearance of forests, where large amounts of carbon are stored as biomass. Carbon sequestration through reforestation (long-term storage of carbon in plants and trees), offers potential to remove carbon dioxide from the atmosphere. Reforestation is not only about maximising the amount of carbon stored per unit of land area. For example, to protect biodiversity and preserve habitat, a mix of plant species is desirable, as opposed to monocultures. See Sustainable Forestry Initiative (US) and Sustainable Foresty and the European Union. Latest publications on CCS can be found here.

Acknowledgement: Large parts of the texts were taken from Lars Waldheim´s contribution to the report “The Contribution of Advanced Renewable Transport Fuels to Transport Decarbonisation in 2030 and beyond”

  • Renewable fuels of non-biological origin (RFNBO)
  • Recycled carbon fuels
  • Bioenergy carbon capture and storage (BECCS)
  • Bioenergy retrofitting

Steering committee members

  • 1
  • 2
  • 3
  • 4
  • MORE
  • MORE
  • MORE
  • MORE
  • MORE
  • MORE
  • MORE
Copyright © 2025 ETIP-B-SABS 2. All Rights Reserved. This project has received funding from the European Union's Horizon Europe Research and Innovation Programme under Grant Agreement No.101075503.

Privacy policy, Disclaimer & Copyright

Designed by ETA-Florence Renewable Energies